Go4Hybrid

Grey Area Mitigation for Hybrid RANS-LES Methods

FINAL OPEN WORKSHOP

The Go4Hybrid Project Objectives

Despite excellent results by hybrid RANS-LES methods, a fundamental issue remains to be addressed. Known as the "grey area problem", this concerns the transition region between the RANS and LES modes of such hybrid methods. The grey area problem has a particularly detrimental impact on flows featuring shallow regions of boundary layer separation and reattachment. In such cases, the accuracy of hybrid RANS-LES predictions can be inferior to lower order RANS methods. Unfortunately, applications that tend to suffer from grey area issues include some of the most important aerodynamic and aero-acoustic flows, such as wings near the borders of the flight envelope and jet noise.

This is the main motivation for the Go4Hybrid project, which has pursued the development and demonstration of improvements to hybrid RANS-LES methods to reduce the severity of the grey area issue (or eliminate it entirely).

A range of approaches to reducing the grey area severity have been developed and evaluated. The evaluation took into account not only the predictive accuracy of the improved methods but also practical issues, such as computational expense and user-friendliness. A balance was struck between simple academic test cases (for reduced computational expense and isolated flow mechanisms) and complex application test cases (for demonstrating practicability). Details will be presented in this Final Open Workshop.

Location

Premises of CFD Software GmbH, CHIC, Bismarckstr. 10-12, 10625 Berlin, Germany

Nearest public transport: Ernst-Reuter-Platz

Date

```
28<sup>th</sup> – 29<sup>th</sup> September 2015
```

Workshop Fees

The workshop fees will be 400€ - and will contain coffee breaks, lunches, dinner, and most of all, a free copy of the final report of the Go4Hybrid project to be published by Springer in the NNFM (Notes on Numerical Fluid Mechanics and Multidisciplinary Design) book series. This book will contain all results and experience gained from the Go4Hybrid project.

Registration

The deadline for registration to the workshop is **31 August 2015**.

Please visit:

Go4hybrid-final-workshop.eventbrite.de

or use the QR-Code directly \rightarrow

We thank our sponsors:

Programme 28 September 2015

12:00 Light lunc	ht lunch
------------------	----------

13:00 C. Mockett The Go4Hybrid Project in brief CFD Software GmbH

Invited Lectures

13:20	F. Menter ANSYS	Stress-Blended Eddy Simulation (SBES) - A New Paradigm for hybrid RANS-LES Modelling
13:50	S. Jakirlic TU Darmstadt	Residual turbulence modelling in Hybrid RANS/LES simulation methods
14:20	Coffee	
14:35	L. Davidson Chalmers University	Inlet boundary conditions for two-equation hybrid LES-RANS models
15:05	D. Laurence EDF	Design of Near-wall RANS models for heat transfer at all Re numbers
15:35	D. Knoerzer European Commission	Research and Innovation in Horizon 2020 – Aeronautics research on European level

Industrial views

16:05	B. Duda EXA	Investigations of the grey area behavior of the hybrid LBM-VLES approach
16:30	Coffee	
16:45	G. Servera PSA Peugeot-Citroen	Well-capturing the unsteady flow and pressure forces on an Ahmed body by numerical computations
17:10	S. Arvidson P. Weinerfelt SAAB	From steady to unsteady flow simulations in the aircraft industry – Saab's view on CFD
17:35	C. Hirsch NUMECA	Industrial and Turbomachinery applications and requirements for Hybrid methods
20:00	Workshop Dinner	

Programme 29 September 2015

The Go4Hybrid Methods

09:00	C. Mockett CFD Software GmbH	Non-zonal methods for grey-area mitigation				
09:20	M. Strelets NTS	Improved embedded approaches for grey-area mitigation				
Go4H	Go4Hybrid Results (Test Cases)					
09:40	S. Deck ONERA	Flat Plate Turbulent Boundary Layer - a fundamental test case				
10:00	SH. Peng FOI	Spatial Shear Layer - a fundamental test case				
10:20	A. Revell The University of Manche	Helicopter fuselage flow ester				
10:40	J. Kok NLR	Delta wing with vortex breakdown				
11:00	Coffee					
11:20	A. Probst DLR	Three-element airfoil – DLR F15				
11:40	M. Strelets NTS	2D Wall-mounted Hump				
12:00	C. Mockett CFD Software GmbH	Round Jet flow and noise				
12:20	M. Fuchs A. Revell CFD Software GmbH/The	Assessment of methods on a common CFD platform Univ. of Manchester				
12:40	Conclusion of the Wo	rkshop - Lunch				